منابع مشابه
Properties of Armendariz Rings and Weak Armendariz Rings
We consider some properties of Armendariz and rigid rings. We prove that the direct product of rigid (weak rigid), weak Armendariz rings is a rigid (weak rigid), weak Armendariz ring. On the assumption that the factor ring R/I is weak Armendariz, where I is nilpotent ideal, we prove that R is a weak Armendariz ring. We also prove that every ring isomorphism preserves weak skew Armendariz struct...
متن کاملOn skew Armendariz and skew quasi-Armendariz modules
Let $alpha$ be an endomorphism and $delta$ an $alpha$-derivationof a ring $R$. In this paper we study the relationship between an$R$-module $M_R$ and the general polynomial module $M[x]$ over theskew polynomial ring $R[x;alpha,delta]$. We introduce the notionsof skew-Armendariz modules and skew quasi-Armendariz modules whichare generalizations of $alpha$-Armendariz modules and extend thecla...
متن کاملOn quasi-Armendariz skew monoid rings
Let $R$ be a unitary ring with an endomorphism $σ$ and $F∪{0}$ be the free monoid generated by $U={u_1,…,u_t}$ with $0$ added, and $M$ be a factor of $F$ setting certain monomial in $U$ to $0$, enough so that, for some natural number $n$, $M^n=0$. In this paper, we give a sufficient condition for a ring $R$ such that the skew monoid ring $R*M$ is quasi-Armendariz (By Hirano a ring $R$ is called...
متن کاملOn a generalization of central Armendariz rings
In this paper, some properties of $alpha$-skew Armendariz and central Armendariz rings have been studied by variety of others. We generalize the notions to central $alpha$-skew Armendariz rings and investigate their properties. Also, we show that if $alpha(e)=e$ for each idempotent $e^{2}=e in R$ and $R$ is $alpha$-skew Armendariz, then $R$ is abelian. Moreover, if $R$ is central $alpha$-skew A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Korean Mathematical Society
سال: 2010
ISSN: 1015-8634
DOI: 10.4134/bkms.2010.47.5.883